Indian Statistical Institute Semestral Examination Differential Geometry II - MMath II

Max. Marks: 60

Tome : 3 hours

[2]

- (1) (a) Define the term : Riemannian metric. Given $A, B \in M_n(\mathbb{R}), g(A, B) = \operatorname{tr}(A^t B)$ is a metric on $M_n(\mathbb{R})$. Justify. [3]
 - (b) Let (M, g) be a Riemannian manifold, $\sigma : I \longrightarrow M$ a smooth curve and d_g the associated metric on M. Define the length $\ell(\sigma)$ of σ . If $M = M_n(\mathbb{R})$ and g the metric in question 1 (a) above, show that $d_g(0, Id) \leq \sqrt{n}$. Here 0 is the zero matrix and Id denotes the identity matrix. [1+6]
 - (c) Define the term : *isometry*. On $O(n, \mathbb{R})$ consider the metric g induced by the metric in question 1 (a). Show that left multiplication by elements of $O(n, \mathbb{R})$ are isometries. [10]
- (2) (a) State the fundamental theorem of Riemannian geometry.
 - (b) Let \mathbb{H} denote the upper half plane with the Poincaré metric g. Describe the Riemannian connection on (\mathbb{H}, g) . [12]
 - (c) Show that the map $f : (\mathbb{H}, g) \longrightarrow (\mathbb{H}, g)$ defined by $(x, y) \mapsto (x + a, y)$, $a \in \mathbb{R}$ is an isometry. Is the map $h : (\mathbb{H}, g) \longrightarrow (\mathbb{H}, g)$ defined by $(x, y) \mapsto (x, y + b), b \in \mathbb{R}$ an isometry? [6]
- (3) (a) Discuss the notion of parallel transport on a Riemannian manifold. Show by an example that parallel transport depends on the path. [10]
 - (b) Define the terms : geodesic, geodesically complete. Describe the geodesics on the sphere. Conclude that the sphere is geodesically complete. Give an example of a Riemannian manifold that is not geodesically complete. [10]